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1. INTRODUCTION 

 In this paper, we review large databases, covering a wide 
range of therapeutic interests, as valuable sources of struc-
ture-activity relationships studies making emphasis on those 
that are freely accessible. Recent advances in computational 
tools that have been developed to identify structural leads 
and activity patterns in large compound collections are also 
discussed. 

 The massive advent of combinatorial and parallel synthe-
sis as well as in vitro high-throughput screening (HTS) and 
the access to web-based bioinformatic tools has given rise to 
a new data-rich environment for the life-sciences dealing 
with biomolecular targets (DNA, RNA, proteins, enzymes, 
receptors) and molecular ligands (substrates, inhibitors, ago-
nists) alike. In direct response, a plethora of chemical and 
pharmacological records are electronically edited, stored, 
linked and organized for expert retrieval. The key goal be-
comes evident: by shortening the trial and error cycles in the 
drug discovery and development process costs are lowered 
[1]. In early stages of drug research computational studies of 
structure-activity relationships (SAR) on compound collec-
tions are being used to accelerate the identification of prom-
ising new candidates with innovative mechanisms of action 
[2]. Precisely, among the key goals in research and devel-
opment (R&D) projects are the introduction of fully auto-
mated virtual screening (VS) in a knowledge-based manner. 
In this way, chemical databases have evolved from being just 
repositories of compiled compounds to being active tools in 
drug discovery. Recommended reading in this area is M. A. 
Miller's review about the role of chemical databases in drug 
design [3]. 

 In pharmaceutical companies certain databases are kept 
“in house”. Other databases, started as commercial ventures, 
are consulted mostly by pharmaceutical companies which  
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can afford the user license costs. Alternatively, non-commer-
cial projects such as the NIH Molecular Libraries Initiative 
[4] give the scientific community free access to the records 
of small molecules. Particularly, the electronic access to data 
of public sources such as patents, scientific journals and con-
ferences has spurred the creation of annotated chemical li-
braries, i.e. added expert comments (if available) to the nu-
merical, graphical or text records [5]. The vast amount of 
information contained in such compound collections can 
lead to new computational strategies that enhance the reli-
ability of computed SAR- and QSAR- predictions for valid 
compound selection (Table 1).  

Table 1. List of Goals Achieved by Fully Automated In Silico

High Throughput Screening Also Called Virtual 

Screening of Large Compound Databases 

Improve efficiency of drug discovery 

Describe computationally drug-like molecular properties   

Identify promising target candidates (biomolecules, proteins, enzymes, 
receptors) 

Identify promising ligand candidates (small organic synthetic or 
biosynthetic compounds)  

Conduct lead generation  

Perform lead optimization  

Find innovative new pathophysiological pathways for patents  

Reduce the costs of R&D 

Revise older in silico approaches to drug discovery when probably 
promising candidates failed to pass the tests due to incorrect assumptions 
and computation  

Revise older in vivo and vitro assays to unravel false compound selections

Improve drug potency and specificity (pharmacodynamics) 

Predict ADME characteristics of potential drug candidates 
(pharmacokinetics)  

Estimate potential toxicity (ADMET) 
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 However the overwhelming number of molecular de-
scriptors that are frequently used in QSAR studies [6] re-
mains difficult to interpret by medicinal chemists and makes 
it difficult to guide the next generation candidates for syn-
thesis and testing [7]. Useful experimental and computed 
molecular descriptors to assess druggability or drug-like pro-
files are summarized in Table 2.

Table 2. List of Computed or Experimental Molecular Descrip-

tors Commonly Used During In Silico Screening 

Studies. The Values Indicate Established Thresholds 

for Drug-Likeliness 

Number of hydrogen-bond donors and acceptors  

Aqueous solubility, logS > -4 ug/ mL  

Octanol/water partition coefficients, logP, logD 

Dissociation, ionization, pKa  

Calculated topological parameters: polar surface area, PSA < 140 Å2;

scaffold and side chain flexibility for conformers 

Lipinski's Rule of Five: molecular weight  500, number of hydrogen-

bond donors  5, Log P  5,  sum of oxygen and nitrogen atoms  10 

Experimental pharmacokinetic paramenters (ADMET): volume of 

distribution, bioavailability, permeation tests  

Permeability, like in vitro cell permeation, Caco2 cell culture, etc.  

Blood/brain partitioning, logBB 

Chemical stability, reactive groups, reactive atom or hetero-atom counts 

Predictions based on annotated fragment libraries for reactive or toxic 

groups, i.e. certain chemical groups associate to certain intrinsic 

toxicological effects, such as carcinogenicity  

In vitro activity tests, like log IC50, ion channel blockage, etc. 

 Historically, since the seminal work of Cramer to con-
duct substructural analysis [8] several computer programs 
have been developed to this end: they provide new ap-
proaches to handle predefined substructure fragments. An 
early but typical example of parsing a chemical library 
through general substructure fragments is the work of Bemis 
and Murcko who analyzed the Comprehensive Medicinal 
Chemistry Database [9] in terms of ring systems, linker at-
oms, side chain atoms or scaffolds [10]. Thus, new computer 
tools have been emerging that are helpful to derive SAR 
studies defining structural features like rings, side chains, 
functional groups or pharmacophoric patterns. For instance, 
SLASH, HookSpace, RECAP or Stigmata are reviewed in 
[11]. 

 Theoretical outcomes of SAR-studies exploiting com-
pound libraries by aforementioned parser options include: (i) 
Identification of new classes of active chemotypes (e.g., 
scaffold hopping [12,13]); (ii) identification of privileged 
substructures [14,15]; (iii) chemotype-based hierarchical 
analysis of the distribution of actives associated with bio-
logical screening [16]; as well as (iv) exploration of chemo-
types which are strongly associated with inactivity (e.g. da-
tabase shaving [17]). Loading known pharmacologically 

active agents with annotations about their experimentally 
identified or computed targets/receptors creates a more or 
less reliable reference dataset for similarity queries of still 
undetected compounds in a far larger dataset. Hence annota-
tion cross-linking bio- and cheminformatics forms a prereq-
uisite for the design of ligand or target type focused com-
pound libraries in search of potential drug candidates. In the 
opposite direction work in silico approaches exploiting sets 
of known pharmacologically active agents to identify novel 
disease-related biomolecular targets, in analogy to reverse 
pharmacology (see also discussion).  

 The next segment will highlight large databases - mainly 
public ones - with annotated pharmacological activity that 
can be used to conduct SAR-studies dealing with various 
therapeutic applications. In the following part, we focus on 
recent developments of computational programs, some of 
them freely available, in order to parse compound collections 
and to perform clustering studies. This is followed by a dis-
cussion of recent studies to parse compound collections. Re-
lated services on the Internet to generate the necessary mo-
lecular parameters were reported in two reviews [6,18]. 

2. DATABASES 

2.1. Annotated Compound Collections 

 Table 3 summarizes the names, developers, and web sites 
of large, annotated collections of compounds that are freely 
available. A description of each database with corresponding 
references is given in the following: 

PubChem 

 It is a public database of chemical structures and their 
corresponding activities accessed through the National Li-
brary of Medicine [4]. The system links the chemical struc-
ture records with text of biomedical literature, a protein 
structure database and to the depositor web sites. It also links 
small-molecule information to the PubMed Entrez databases 
[19]. Retrievable items are chemical structures and names, 
bio-assay descriptions with activities. Another noteworthy 
feature of PubChem is its tool for fast structural similarity 
searches. 

National Cancer Institute Databases 

 It contains a remarkable dataset of more than 250,000 
molecules. Around 40,000 structures alone deal with anti-
cancer and anti-HIV activities gathered during the NCI’s 
Developmental Therapeutic programs. This dataset has been 
reviewed elsewhere and is said to be one of the most popular 
data sets to perform SAR-studies and to test new data-
mining approaches [18]. 

ChemBank 

 This compound collection belongs to the Initiative for 
Chemical Genetics (ICG) of the National Cancer Institute 
[20]. The web-based database stores information on small 
molecules that have been tested in biological assays in cell 
cultures or whole model organisms. ChemBank also contains 
several visualization tools to assist navigation through 
chemical and biological space [21,22]. ICG's molecules can 
be filtered either by their names, structures or similarities 
defined through numerical descriptors, like molecular 
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weight. The user is informed about more than 30 screening 
projects divided into more than 440 individual experiments 
(last web - visit September 2006). 

DrugBank 

 DrugBank is a product of Canada’s genomics strategy to 
the end that information on drug safety is collected [23]. 
Some 4,300 drugs are organized into four major groups: (i) 
FDA-approved small organic substances; (ii) FDA-approved 
protein/peptide drugs; (iii) nutraceuticals or micronutrients 
and finally (iv) experimental agents. More than 6,000 bio-
logical targets are linked to these drugs. Web-based full 
search in DrugBank allows the user to download any inter-
esting text entry - called a DrugCard - or any structural file 
associated to it. 

Chemical Entities of Biological Interest (ChEBI) 

 ChEBI focuses on small chemical compounds and in-
cludes both synthetic and natural products. It is a cornerstone 
in the database system of the European Bioinformatics Insti-
tute (EBI) [24]. There are two main compound sources: (i) 
an Integrated Relational Enzyme database from EBI or (ii) 
another small molecule database from the Kyoto Encyclope-
dia of Genes and Genomes (see below). Molecules in the 

database can be browsed using several web-based filter op-
tions such as SMILES, formula, registry numbers, IUPAC 
names. Chemical structures and biological information can 
be downloaded, too. 

World of Molecular Bioactivity (WOMBAT) 

 WOMBAT constitutes an annotated database distributed 
by Sunset Molecular Discovery. The free database holds 
information from the scientific literature, specifically from 
papers published in medicinal chemistry journals. The most 
recent version contains information of 154,236 entries, total-
ing over 307,700 biological activities on 1,320 unique tar-
gets, for instance, G-protein coupled receptors, ion channels, 
kinases, serine proteases. Molecules are further annotated 
with calculated logP or descriptors associated with Linpin-
ski’s rule of five [25]. 

Binding Database 

 The Center for Advanced Research in Biotechnology at 
the University of Maryland Biotechnology Institute operates 
this online database [26-28]. It has gathered nearly 19,700 
binding affinities of synthetic ligands on more than 230 tar-
gets through either enzyme inhibition or isothermal titration 
calorimetry. Key word search options include target names, 
compound names, substructures or SMILES strings. The 

Table 3. Publicly Available Compounds Databases Annotated with Biological Activity 

Database / Developer Site or Support Internet Web side 

PubChemNational Library of Medicine / NIH http://pubchem.ncbi.nlm.nih.gov/ 

Developmental Therapeutic Program / NCI and NIH http://dtp.nci.nih.gov/ 

Files can be downloaded at: Chemical Structure Lookup Service / Frederick 

and Bethesda http://cactus.nci.nih.gov/ 

ChemBank Initiative for Chemical Genetics / NCI http://chembank.broad.harvard.edu/ 

DrugBank / University of Alberta http://redpoll.pharmacy.ualberta.ca/drugbank/ 

Chemical Entities of Biological Interest / European Bioinformatics Institute, 

EBI and EMBL 

http://www.ebi.ac.uk/chebi/ 

World of Molecular Bioactivity (WOMBAT) / Sunset Molecular Discovery http://www.sunsetmolecular.com/index.php 

Binding Database / University of Maryland Biotechnology Institute http://www.bindingdb.org 

PDBbind / University of Michigan http://www.pdbbind.org/ 

Mother of All Databases (MOAD) / University of Michigan http://www.bindingmoad.org/ 

Ligand-Protein DataBase / The Scripps Research Institute http://lpdb.scripps.edu/ 

Protein Ligand Database / University of Cambridge http://www-mitchell.ch.cam.ac.uk/pld/ 

ChemMine / University of California, Riverside http://bioweb.ucr.edu/ChemMineV2/ 

French National Chemical Library / National Center for Scientific Research, 

CNRS 

http://chimiotheque-nationale.enscm.fr/ 

http://chimiotheque.ujf-grenoble.fr/induk.html 

Therapeutic Target Database / National University of Singapore http://xin.cz3.nus.edu.sg/group/cjttd/ttd.asp 

Kyoto Encyclopedia of Genes and Genomes / Kyoto University, University 

of Tokyo 

http://www.genome.jp/kegg/ 

ChemIDplus http://chem.sis.nlm.nih.gov/chemidplus/ 
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user may retrieve both the molecular structures and the inhi-
bition measurements as annotated SDF files. The web site 
contains links to other storage services regarding molecular 
interactions such as the PDBbind database [29,3] and the 
Mother of All Databases (MOAD) [31,32]. Examples of fur-
ther World Wide Web accessible databases that gathers 
structural information linked to experimental binding data is 
the Ligand-Protein DataBase [33] and the Protein Ligand 
Database [34]. 

ChemMine 

 The University of California, Riverside web site, contains 
a suite of tools for free compound searching, structure-based 
clustering, descriptor calculations and search options for pub-
lished biological activity together with target protein descrip-
tions [35]. The annotated database includes over 5,800,000 
public and commercial synthetic or natural compounds. The 
structures and annotations can be searched by chemical pro-
perties, substructure matches, structural similarities or bio-
logical activities. 

French National Chemical Library 

 The French National Chemical Library is a federal initia-
tive of French academic laboratories. They share vast collec-
tions of synthetic products in a database with some 26,800 
substances. Its scaffold-diversity analysis capacities have 
been demonstrated in [36]. 

Therapeutic Target Database 

 The National University of Singapore gives access to this 
web-based resource. The database currently hosts 1,535 pro-
teins and nucleic acid targets, and 2,107 drugs or ligands. 
The targets represent 125 different human diseases. The da-
tabase stores knowledge taken from literature and connects 
its entries to corresponding sequences, 3D-structures, func-
tions, drug-ligand binding properties, drug usages or effects 
held in other databases. The query items are target names, 
disease names, drug therapeutic classifications and so forth 
[37]. 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

 A combined effort in bioinformatics on the part of Kane-
hisa Laboratories at the Bioinformatics Center of Kyoto 
University and the Human Genome Center at the University 
of Tokyo, KEGG is actually more a collection of databases 
for better understanding cell function of complex systems 
and entire organisms in view of genome analysis [38]. Its 
Compound database administers 14,000 entries of known 
metabolic compounds and to a lesser extent pharmaceutical 
and environmental substances.  

ChemIDplus 

 It was conceived as a web-based source containing in-
formation on the chemistry of substances [39]. ChemIDplus 
has been developed by the National Library of Medicine.  
It keeps records on pharmaceutical, industrial and environ-
mental substances reaching a total of roughly 160,000 struc-
tures and 360,000 corresponding names. ChemIDPlus consti-
tutes a member the TOXNET database family [40].  

Electronic Orange Book 

 FDA’s Electronic Orange Book for approved drug prod-
ucts with its orange colored pages enjoys great popularity 
amidst health care professionals [41]. 

 Table 4 lists widely used commercial databases dotted 
with annotations which came to our attention but we do not 
make any claim of being a complete listing. 

2.2. Very Large Compound Collections for Database 

Mining 

 In addition to the aforementioned databases with data-
base mining capabilities there are others providing very large 
compound collections, for instance the Available Chemicals 
Directory, the Cambridge Database, or the Chemical Ab-
stracts Registry have already been reviewed in [1,3]. 

 In recent times, Monge et al. compiled and analyzed a set 
of 32 libraries gathering 2.6 million unique compounds [42]. 
As an instance out of the larger commercial databases we 
present iResearch Library from ChemNavigator, which holds 
more than 26 million chemical samples [43]. The commer-
cial Dictionary of Natural Products, which has become quite 
popular, holds chemical, physical and biological records on 
nearly 200,000 compounds [44]. 

 The ZINC database developed at the University of Cali-
fornia, San Francisco, is another large compilation of more 
than 4.6 million entries. The molecules and structures are 
freely available for database mining purposes [45]. Their 
records are enriched by property annotations such as molecu-
lar weight, calculated LogP, and number of rotatable bonds. 
Each molecule in the library contains vendor and purchasing 
information and is directly amenable to receptor docking. 

 Ligand.Info can be found on the Internet as a free service 
aimed at handling challenges of today's database mining op-
erations. It compiles various publicly available databases 
issued by the BioInfoBank Institute in Poland [46]. More 
than one million small molecules have been obtained so far 
from commercial and public providers. This database can be 
screened using a Java-based search tool. 

Table 4. List of Popular Commercial Databases Annotated with Biological Activity Stating Database, Vendor and Web Sites 

Database / Vendor Internet Web side 

Comprehensive Medicinal Chemistry (CMC) MDL http://mdl.com/products/knowledge/medicinal_chem/index.jsp 

MDL Drug Data Report (MDDR) MDL http://www.mdli.com/products/knowledge/drug_data_report/index.jsp 

Derwent World Drug Index (WDI) Thomson Scientific http://scientific.thomson.com/products/wdi/ 



Large Databases for SAR-Studies Mini-Reviews in Medicinal Chemistry, 2007, Vol. 7, No. 8    855

2.3. Datasets Used to Develop Computational Techniques 

 The interplay between large compilations of data sets and 
new implementations of in silico methods has boosted the 
general use of databases to develop new ideas and computa-
tional approaches. The most frequently applied resources are 
examined in [18]. Andreas Bender compiled a superset of 44 
data sets organized into nine categories that have been used 
in works by other scientists in the field of cheminformatics 
[47]. Also, the European Bioinformatics Institute has pro-
vided free access to a number of datasets [48]. The Collec-
tion of Bioactive Reference Analogues (COBRA), which has 
incorporated 4236 sample molecules from the literature [49], 
has been used to evaluate a modified version of the k-means 
clustering algorithm [2]. 

3. TOOLS FOR SAR-STUDIES BASED ON STRUC-

TURAL ANALYSIS OF COMPOUND LIBRARIES 

 The increasing number of commercial and public chemi-
cal databases has boosted innovation in the field of chemin-
formatics, especially in data management [3]. Today's tech-
nological advances offer fully automated structural analysis 
of compound collections, albeit with certain pitfalls (Table 
5). 

Table 5. List of Challenges Encountered in Fully Automated 

Solutions Aimed at Handling Molecular Computa-

tions 

Integrate heterogeneous programming languages, software and 

informatics tools 

Convert data types and ensure compatibility between different types of 

data sources 

Collect chemical structures, and experimental or already computed data 

from different electronic sources or even print media 

Evaluate large amounts of molecular data in a consistent and unrestricted 

protocol 

Recognize mesomeric systems, tautomers, ionization, dimerizations etc. 

Multiple binding modes of ligand 

Incorporate protein target flexibility and higher energy conformation 

states of ligand in conformational analysis in case of induced fit into 

unfavorable conformations, observed in over 50 % of complex structures 

Protein target (receptor, enzyme) selectivity of ligand 

Detect and manage untreatable molecules and outliers to a rule (e.g. cell 

uptake below) 

Predict pharmacokinetics: roughly 30 % of all known drugs may be 

substrates for active transporters across cell membranes. Hence Log P 

does not always reflect passive diffusion processes 

Take decisions if problems concerning the structural models are met 

Handle all possible exceptions in an unattended way 

Missing data and uneven data quality management 

 Due to the critical examination provided by Roberts et al.
of SLASH, HookSpace, RECAP or Stigmata [11] our empha-

sis in this review is placed upon other approaches in the fol-
lowing: 

LeadScope is a commercial program that performs sys-
tematic substructural analysis of compound collections using 
structural features [50]. There are 14 major structural classes 
(e.g., structural patterns) that are predefined in a template 
library and are related to common building blocks in medici-
nal chemistry. Among these structural classes are amino ac-
ids, functional groups, aromatics, heterocycles, etc. The user 
interface of LeadScope assists not only the visualization of 
all the structural classes in the data set, but also helps to ap-
ply filtering criteria and identify statistically significant fea-
tures [11]. An excellent example provided by this approach 
is the analysis of the NCI database [11,51]. 

Molecular Equivalence Index (MEQI) was developed by 
Johnson and Xu [52,53]. The program parses a chemical 
structure into five major categories: complete 2D-structure, 
cyclic system, rings, side chains and functional groups. Each 
chemotype is identified by a code of four or five characters 
that uniquely identifies that chemotype. This approach cre-
ates chemotypes that are equivalence classes at a given level 
of structural resolution, thus overlapping classes do not oc-
cur. A chemical structure can also be parsed at different lev-
els of structural resolution. MEQI is free for academics [54]. 
It utilizes several post-processing capabilities, e.g. selections 
of most or least frequent chemotypes and generation of che-
motype-based fingerprints. Recent applications of MEQI are 
the construction of an annotated compound library directed 
to nuclear receptors [5] and a chemotype-based hierarchical 
classification of the NCI-AIDS database [16]. A related ap-
proach based on chemotypes has recently been published by 
Wolohan et al. [55]. In this so-called Structural Unit Analy-
sis the underlying algorithm splits the molecules into frag-
ments and then analyzes what “structural subunits” are asso-
ciated with activity. The authors applied this approach to 
explore the NCI database. 

 ClassPharmer is a commercial software product [56] that 
classifies structures into molecule classes based on the prin-
ciple of maximum common substructures (MCS) [57]. The 
size of the MCS is customizable by modifying a homogene-
ity setting. In addition to the MCS, the chemical environ-
ment is also considered as a means for sorting out the mole-
cules. In this approach the same molecule may appear in 
various classes depending on the class definition. If neces-
sary a customize option adjusts the level of accepted redun-
dancy. Newer studies with ClassPharmer include a scaffold 
diversity analysis of 17 commercially available screening 
collections [58] and a substructure analysis of ligand sets 
from five target families [59]. 

Distill, a software from Tripos [60] parses and classifies 
all molecules through a similarity filter based on their com-
mon substructure. Prior to the output of hierarchical cluster-
ing each molecule is evaluated by scores calculated from 
deviations in the observed number of atoms, bonds, ring 
bonds, hetero-atoms or branched atoms in the common sub-
structure. Although the construction of the hierarchy is inde-
pendent of the processed property data, the resulting nodes in 
the dendogram can be color-coded by averaged property 
values. Thus, a visual analysis can be performed between 
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structures and properties. Distill also enables the construc-
tion of queries from selected compounds to search other data 
sets. 

Fragmenter can be used to sort out molecules of a data 
set with virtually any fragmentation engine. It includes the 
Retrosynthetic Combinatorial Analysis Procedure (RECAP) 
method of molecule fragmentation following simplified ret-
rosynthetic rules [61]. The program also analyzes libraries in 
terms of side chains and the specific side chain position. 
Jklustor performs clustering of large databases using MCS 
among other descriptors. Fragmenter and JKlustor are inte-
grated in ChemAxon’s JChem software suite [62].  

 The next step is logically the random recombination of 
RECAP fragments to generate virtual combinatorial libraries 
of synthetically reasonable chemical structures, a new solu-
tion to assist virtual de novo drug discovery and proposed by 
MOE, a modeling package for cheminformatics and bioin-
formatics [63]. It can generate diverse combinatorial libraries 
for functionalized scaffolds either by systematic combina-
tions of fragments with scaffolds to yield all possible prod-
ucts (fully-enumerated QuaSAR-CombiGen) or by random 
combinations using scaffold and fragmental substituent data-
bases (non-enumerative QuaSAR-CombiDesign). The latter 
is also capable of statistically sampling diverse subsets from 
extremely large virtual libraries. The user-made data sets can 
be tested by HTS against either molecular property filters/ 
descriptors or against computed models of pharmacophore, 
linear or binary correlations from QSAR/QSPR studies as 
well as similarity/fingerprints according to the working hy-
pothesis. Its latest 2006 version comes with a database of 
over half a million compounds for lead search against known 
biomolecular targets for screening and ligand docking. To 
this end, it also provides a user interface for FlexX ligand 
docking into 3D-structures of receptors and enzymes [64].  

 Examples of proprietary software that has been devel-
oped to conduct SAR-studies of large databases are Visuali-
SAR [65] and Hits Analysis Database [66], both developed 
by pharmaceutical companies. Hits Analysis Database pro-
vides insight into the structural classes of molecules and 
conducts cluster analysis applying MCS protocols.  

 In a recent example of a research project aimed at identi-
fying structural features associated with biological activity, 
Ertl et al. explored the heteroatomic ring distribution in ac-
tive molecules taking two active compound sources: the 
World Drug Index (WDI) as well as the MDDR database 
(Table 4). The authors compared the structures with the 
molecules in the Dictionary of Natural Products and com-
mercial molecules. They summarized previous studies ana-
lyzing ring systems in active molecules [67].  

 The work by Koch et al. also reflects structural analysis 
of large compound libraries supplied by the Dictionary of 
Natural Products. Here, the authors undertook a structural 
classification of natural substances in terms of scaffolds in a 
hierarchical way [68].  

 Lameijer et al. analyzed the NCI database identifying so-
called “chemical clichés” as most frequent structural frag-
ments and pairs of fragments [69]. Another recent structural 
analysis of the NCI-AIDS database is a chemotype-based 
hierarchical classification of active molecules [16]. 

 The GreenPharmaDataBase-net project (GPDBnet) was 
developed at Greenpharma, France. It constitutes a platform 
that is particularly useful for treating dispersed knowledge 
along the wide discovery front of phytopharmaceutical and 
ethnopharmacological science. In fact, due to the heterogene-
ity of sources it often becomes extensively time consuming 
to retrieve relevant pieces of information. In order to over-
come these difficulties, a knowledge management strategy is 
encouraged. GPDBnet embraces an internal database cou-
pled with molecular modeling tools and becomes accessible 
from the Greenpharma’s intranet via research contracts. Its 
built-in database gathers records on plants from internal or 
external literature: their traditional uses, their biological 
properties, their metabolites including structures, biological 
assays, and the targets in human cells. So it becomes possi-
ble to conduct cross-queries with traditional use of the com-
pounds, biological activity and biomolecules in a straight-
forward manner. Isolated phyto-pharmacological agents can 
also be exploited to discover novel targets, i.e. reverse 
pharmacognosy. The workflow of GPDBnet is presented in 
Fig. (1). In a more generalized view, data mining architec-
tures like GPDBnet, are knowledge management tools which 
focus on generating either new ideas or validating them. To 
optimize the use of this database and allow predictions, mo-
lecular modeling software such as the virtual screening pro-
gram, Selnergy™ [70,71] has been coupled to GPDBnet.  

 Nowadays in silico screening has become a well-estab-
lished method for hit discovery, yet results still have to be 
experimentally validated. GPDBnet's asset is twofold: on one 
hand, virtual screening results are validated with the existing 
experimental data in order to get robust predictions, i.e. in-
creasing hit rates, while on the other hand, selected sub-
stances can further be evaluated on Selnergy or other predic-
tion tools for building new research hypotheses, e.g. AD-
MET models Fig. (2). Several applications support the suc-
cessful implementation of this strategy [70-72]. 

4. DISCUSSION 

 In a competitive environment such as the pharmaceutical 
industry, being first in a market is desirable. Despite long 
and massive investments on promising technologies such as 
HTS and combinatorial chemistry, a recent survey [73] 
showed that 15 years and $880 millions are the average time 
and the cost from the target validation to the regulatory ap-
proval, respectively. Several authors have suggested recon-
sidering natural products as a source of bioactive entities 
[74-77], as nature has still a lot of lessons to teach us. 
Meanwhile, to absorb the risks of pharmaceutical research, a 
strategy of merging within pharma-industry has been accel-
erating for a decade or so, exacerbating communication pro-
blems between research groups, especially those that are 
separated geographically. Internet technologies are obviously 
an appropriate tool for improving communication and ac-
cessing useful information. But in reality, one is confronted 
by an overwhelming amount of data. As a consequence of 
the avalanche of information compound databases play a 
pivotal role in the drug discovery process. The number of 
annotated chemical databases is increasing many of which 
are freely available. Certain compound collections embrace 
additional web-based resources that help in retrieving spe-
cific information. The structural analysis methods currently 
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in use originate from several cheminformatics approaches 
that try to reveal structure-activity relationships among com-
pounds in large virtual databases.  

 Managing large compilations of molecular records in-
volves identifying the most common substructures associated 
with observed activities. Direct outcomes of such studies are 
strongly linked to concepts like scaffold hopping and privi-
leged structures. The NCI database and other free sources are 
frequently consulted to test and validate novel computational 
approaches. But, even today, not all of the molecular data-
handling challenges have been solved (Table 5). New pro-
grams or enhanced versions must tackle these problems. 
Hence, the future is an integrated platform or net of various 
concepts, not just electronic storage facilities. Such a pack-
age should include predictive modeling software to compute 

and store molecular profiles as complements to any experi-
mental data. It should also be able to carry out large numbers 
of ligand docking calculations against biological targets of 
either known or computed structure. In silico methods esti-
mate in vitro or in vivo properties associated with ADMET, 
too.  

 On the other hand in vitro experiments remain paramount 
for verifying computed models or for determining results 
since in silico predictions do not hold in all cases. Especially, 
HTS in cell cultures determines ADMET properties, detects 
metabolic pathways, stability and toxicity, or identifies can-
didates that interact with more than one biomolecular target.  

 In contrast to the aforementioned virtual databases for in 
silico approaches to drug discovery the identification of 

Fig. (1). Illustration of a database search in GPDBnet: a specific plant becomes interesting and the query is launched with the following re-
sults (see Fig. 2).

Fig. (2). Illustration of query and results in GPDBnet: The molecular editor (JME sketcher) starts the substructure search. A 3D-represen-
tation can be displayed with Chime plug-in.
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novel drug targets can be conducted experimentally by re-
verse pharmacology. The latter is sometimes referred to as 
chemical genetics using real libraries of synthetic or natural 
compounds with pharmacological effects to find new dis-
ease-related molecular targets in cells. A recent review pub-
lished in this Journal explains the latest developments of 
such in vitro HTS methods [78]. Integrating data manage-
ment with a user-friendly interface combining automated data 
storage with 3D- virtual screening tools already emerge as 
innovative informatics solutions to boost knowledge search 
in a heterogeneous data environment. In this respect, our 
own solution in the field of phyto-pharmacology, GPDBnet, 
illustrates such an integrated data mining tool to explore mo-
lecular resources of plants. 

CONCLUSIONS 

 Large libraries of chemical compounds reflect the expo-
nential growth in amount of data in the field of drug discov-
ery. For the last two decades molecular R&D concepts have 
tended towards fully automated informatics solutions to 
study structure - activity relationships, especially in combi-
nation with screening of docked ligand candidates to bio-
logical target structures. The in silico selection of natural  
or synthetic compounds aims at improving effectiveness 
throughout the discovery pipeline. The focus of this review 
lies mainly on freely accessible public virtual databases. They 
cover a wide range of known molecular targets and in some 
cases include potentially new therapeutic cellular pathways. 
They also constitute valuable sources for docking simula-
tions. Novel compound collections designed for database 
mining are also described.  

 In conclusion, we discuss recent advances in computa-
tional tools that have been developed for the medicinal 
chemist to identify structural leads and activity patterns in 
large compound collections.  
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ABBREVIATIONS AND GLOSSARY  

2D- / 3D- = Two-dimensional / Three-dimensional 

ADMET = Absorption, Distribution, Metabolism, 
Elimination and Toxicity (pharmacoki-
netics)  

AIDS = Acquired Immune Deficiency Syn-
drome 

Annotation = Assignment of biological or chemical 
information for pattern recognition us-
ing textual or numerical descriptors, 
chemical signatures, structural features 
or keys like fingerprints or pharma-
cophore models to search molecules in 
database queries 

CSD = Cambridge Structural Database 

Chemotype = Structural pattern (e.g., ring, functional 
group, side chain, etc.) 

ChEBI = Chemical Entities of Biological Interest 

Clustering  = Sorting out a collection of compounds 
with assigned descriptors in an effort to 
reduce unwanted redundancy in data 
size, structural similarities and other 
correlations (bias) 

Dataset = Pieces of information sorted by some 
filtering scheme or record type 

Databank  = A repository of collected pieces of in-
formation that can be digitalized for lo-
cal (CDs) or remote retrieval (online 
web servers) 

Database = A computer storage of records that can 
be searched and sorted to answer ques-
tions of the user through a query macro 
language or database management sys-
tem 

EBI = European Bioinformatics Institute 

FDA = Food and Drug Administration (of 
USA)

Fingerprint = Set of structural properties (e.g. cyclic, 
aliphatic, with atoms X, etc.) as a mo-
lecular surrogate to compare chemical 
similarity of compounds 

Focused  = Annotated compound libraries focused
on a specific set of target molecules, 
e.g. enzyme class  

Functionalizing  = Attachment of chemical groups or func-
tions on a scaffold 

HTS = High Throughput Screening (fast filter-
ing and sorting to test against targets or 
criteria) 

ICG = Initiative for Chemical Genetics 

IUPAC = International Union of Pure and Ap-
plied Chemistry (chemical naming of 
substances) 

KEGG = Kyoto Encyclopedia of Genes and Ge-
nomes 

MCS = Maximum Common Substructure 

MEQI = Molecular Equivalence Index 

NCI = National Cancer Institute (of USA) 

NIH = National Institute of Health (of USA) 

PDB = Protein Database / Protein Data Bank  

Pharmacophore  = Ligands' 3D-fragments or properties 
which interact with the receptor's bind-
ing site and are essential for activity 

QSAR  = Quantitative Structure - Activity Rela-
tionships 

RECAP = Retrosynthetic Combinatorial Analysis 
Procedure 
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R&D = Research and Development (of drugs in 
pharmaceutical industry) 

SAR = Qualitative Structure - Activity Rela-
tionships 

Scaffold = Main or central fragment common to a 
group of molecules 

SMILES = Simplified Molecular Input Line Entry 
System 

VS = Virtual Screening 

WDI  = World Drug Index 

WHO = World Health Organization 

WOMBAT = World of Molecular Bioactivity 
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